
Eulerian Tours

By Shaylan Lalloo



What is an Eulerian Tour?

• A path that uses every edge exactly once is 
called an eularian tour. Furthermore, a path 
that starts and ends at the same vertex and is 
an eularian tour but is called an eulerian
circuit. 



When does there exist an eulerian
tour?

• An eulerian tour exists when the degree of all 
vertices except for exactly 2 are even and the 
graph is connected

• An eularian circuit exists when the degree of 
all the vertices are even and the graph is 
connected



Proof

• This can be seen from the fact that every time 
you enter a vertex in a path, you must be able 
to leave it unless you are at the beginning or 
end of the path so this adds 2 to the degree of 
the vertices on the path not being the starting 
or ending vertex.



Algorithm for finding eulerian tours

• Find the starting node. Then recurse using the 
following rule
– If a node has no neighbours, push it onto the 

answer vector

– If a node has a neighbour, throw the neighbours 
onto a stack and process them

– Processing a node consists of deleting the edge 
between the current node and neighbour, then 
recursing on the neighbour. Once that is done, 
pushing the current node onto the answer vector



Code(Variables)

• vector<int> mygraph[10];

• int n;

• vector<int> mystack;

• vector<int> myans;

• int curpos = 0;



Reading Inputs

• ifstream fin ("myin.txt");

• fin >> n;

• for (int i = 0; i < n; ++i){
• int f, t;
• fin >> f >> t;
• mygraph[f - 1].push_back(t - 1);
• mygraph[t - 1].push_back(f - 1);
• }
• for (int i = 0; i < 7; ++i){
• sort(mygraph[i].begin(), mygraph[i].end(), cmp);
• }



Recursion algorithm but using stack

• mystack.push_back(0);
• while (!mystack.empty()){
• curpos = mystack.back();
• if (mygraph[curpos].size() == 0){
• myans.push_back(curpos);
• mystack.pop_back();
• }
• else {
• int neigh = mygraph[curpos].back();
• mystack.push_back(neigh);
• mygraph[curpos].pop_back();
• for (int i = 0; i < mygraph[neigh].size(); ++i){
• if (mygraph[neigh][i] == curpos){
• mygraph[neigh].erase(mygraph[neigh].begin() + i);
• break;
• }
• }
• }
• }



Outputting result

• cout << "MYANS: ";

• for (int i = 0; i < myans.size(); ++i){

• cout << myans[i] + 1 << " ";

• }

• cout << endl;



Pseudocode

• # circuit is a global array
• find_euler_circuit
• circuitpos = 0
• find_circuit(node 1)

• # nextnode and visited is a local array
• # the path will be found in reverse order
• find_circuit(node i)

• if node i has no neighbors then
• circuit(circuitpos) = node i
• circuitpos = circuitpos + 1
• else
• while (node i has neighbors)
• pick a random neighbor node j of node i
• delete_edges (node j, node i)
• find_circuit (node j)
• circuit(circuitpos) = node i
• circuitpos = circuitpos + 1



Visual representation of algorithm



Stack:
Location: 1

Circuit:



Stack: 1
Location: 4

Circuit:



Stack: 1 4
Location: 2

Circuit:



Stack: 1 4 2
Location: 5

Circuit:



Stack: 1 4 2 5
Location: 1

Circuit:



Stack: 1 4 2
Location: 5

Circuit: 1



Stack: 1 4 2 5
Location: 6

Circuit: 1



Stack: 1 4 2 5 6
Location: 2

Circuit: 1



Stack: 1 4 2 5 6 2
Location: 7

Circuit: 1



Stack: 1 4 2 5 6 2 7
Location: 3

Circuit: 1



Stack: 1 4 2 5 6 2 7 3
Location: 4

Circuit: 1



Stack: 1 4 2 5 6 2 7 3 4
Location: 6

Circuit: 1



Stack: 1 4 2 5 6 2 7 3 4 6
Location: 7

Circuit: 1



Stack: 1 4 2 5 6 2 7 3 4 6 7
Location: 5

Circuit: 1



Stack:
Location:

Circuit: 1 5 7 6 4 3 7 2 6 5 2 4 1



Problem involving Eulerian Tour

• USACO Riding Fences
• Farmer John owns a large number of fences that must be repaired annually. He 

traverses the fences by riding a horse along each and every one of them (and 
nowhere else) and fixing the broken parts.

• Farmer John is as lazy as the next farmer and hates to ride the same fence twice. 
Your program must read in a description of a network of fences and tell Farmer 
John a path to traverse each fence length exactly once, if possible. Farmer J can, if 
he wishes, start and finish at any fence intersection.

• Every fence connects two fence intersections, which are numbered inclusively 
from 1 through 500 (though some farms have far fewer than 500 intersections). 
Any number of fences (>=1) can meet at a fence intersection. It is always possible 
to ride from any fence to any other fence (i.e., all fences are "connected").

• Your program must output the path of intersections that, if interpreted as a base 
500 number, would have the smallest magnitude.

• There will always be at least one solution for each set of input data supplied to 
your program for testing.


