Eulerian Tours

By Shaylan Lalloo

What is an Eulerian Tour?

- A path that uses every edge exactly once is called an eularian tour. Furthermore, a path that starts and ends at the same vertex and is an eularian tour but is called an eulerian circuit.

When does there exist an eulerian

tour?

- An eulerian tour exists when the degree of all vertices except for exactly 2 are even and the graph is connected
- An eularian circuit exists when the degree of all the vertices are even and the graph is connected

Proof

- This can be seen from the fact that every time you enter a vertex in a path, you must be able to leave it unless you are at the beginning or end of the path so this adds 2 to the degree of the vertices on the path not being the starting or ending vertex.

Algorithm for finding eulerian tours

- Find the starting node. Then recurse using the following rule
- If a node has no neighbours, push it onto the answer vector
- If a node has a neighbour, throw the neighbours onto a stack and process them
- Processing a node consists of deleting the edge between the current node and neighbour, then recursing on the neighbour. Once that is done, pushing the current node onto the answer vector

Code(Variables)

- vector<int> mygraph[10];
- int n ;
- vector<int> mystack;
- vector<int> myans;
- int curpos = 0;

Reading Inputs

- ifstream fin ("myin.txt");
- \quad fin >> n;
- for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ;+\mathrm{i})\{$
- int f, t;
- fin >>f > t;
- mygraph[f-1].push_back(t-1);
- mygraph[t-1].push_back(f-1);
- \}
- for (int $\mathrm{i}=0 ; \mathrm{i}<7 ;++\mathrm{i})\{$
- $\quad \operatorname{sort}(m y g r a p h[i] . b e g i n()$, mygraph[i].end(), cmp);
- \}

Recursion algorithm but using stack

- mystack.push_back(0);
- while (!mystack.empty())\{
- curpos = mystack.back();
- if (mygraph[curpos].size() ==0)\{
- myans.push_back(curpos);
- mystack.pop_back();
\}
else \{
int neigh = mygraph[curpos].back();
mystack.push_back(neigh);
mygraph[curpos].pop_back();
for (int i=0; i < mygraph[neigh].size(); ++i)\{
if (mygraph[neigh][i] == curpos)\{
mygraph[neigh].erase(mygraph[neigh].begin() + i);
break;
\}
\}
\}
- $\}$

Outputting result

- cout << "MYANS: ";
- for (int $\mathrm{i}=0 ; \mathrm{i}<$ myans.size(); ++i)\{
- cout << myans[i] + 1 << " ";
- \}
- cout << endl;

Pseudocode

- \# circuit is a global array
- find_euler_circuit
- circuitpos $=0$
- find_circuit(node 1)
- \# nextnode and visited is a local array
- \# the path will be found in reverse order
- find_circuit(node i)
- if node i has no neighbors then
- \quad circuit(circuitpos) = node i
- circuitpos = circuitpos +1
- else
- while (node i has neighbors)
- pick a random neighbor node j of node i
- delete_edges (node j, node i)
- find_circuit (node j)
- \quad circuit(circuitpos) = node i
- circuitpos $=$ circuitpos +1

Visual representation of algorithm

Stack:

Location: 1

Circuit:

Stack: 1

Location: 4
Circuit:

Stack: 14

Location: 2

Circuit:

Stack: 142 Location: 5 Circuit:

Stack: 1425 Location: 1 Circuit:

Stack: 142 Location: 5
Circuit: 1

Stack: 1425 Location: 6
Circuit: 1

Stack: 14256
Location: 2
Circuit: 1

Stack: 142562
Location: 7
Circuit: 1

Stack: 1425627 Location: 3

Circuit: 1

Stack: 14256273
 Location: 4

Circuit: 1

Stack: 142562734 Location: 6

Circuit: 1

Stack: 1425627346 Location: 7

Circuit: 1

Stack: 14256273467 Location: 5

Circuit: 1

Stack:

Location:

Circuit: 1576437265241

Problem involving Eulerian Tour

- USACO Riding Fences
- Farmer John owns a large number of fences that must be repaired annually. He traverses the fences by riding a horse along each and every one of them (and nowhere else) and fixing the broken parts.
- Farmer John is as lazy as the next farmer and hates to ride the same fence twice. Your program must read in a description of a network of fences and tell Farmer John a path to traverse each fence length exactly once, if possible. Farmer J can, if he wishes, start and finish at any fence intersection.
- Every fence connects two fence intersections, which are numbered inclusively from 1 through 500 (though some farms have far fewer than 500 intersections). Any number of fences (>=1) can meet at a fence intersection. It is always possible to ride from any fence to any other fence (i.e., all fences are "connected").
- Your program must output the path of intersections that, if interpreted as a base 500 number, would have the smallest magnitude.
- There will always be at least one solution for each set of input data supplied to your program for testing.

